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Abslnd. By using the double-time Green function technique, we derive explicitly the exact 
statistical distribution function of the q-deformed harmonic oscillator, and find that it is 
highly different from the usual Bose and Fermi functions for q # 1. 

Recently there is a great deal of interest in the study of the quantum group SU,(2) in 
the field of mathematical physics. It is known presently that a new boson realization 
of the quantum group can be achieved by means of a q-deformation of the quantum 
harmonic oscillator [1-3]. Through defining the 'q-creation' operator a: and the 
'q-annihilation' operator a,, the commutation relations for the quantum group can be 
presented by the two operators. With the help of the q-commutator for SU,(Z), in 
[I-31, the q-momentum and q-position operators of the q-oscillator were well defined, 
and the Hamiltonian of the system was presented, and also the eigenvalues of the 
q-Hamiltonian was already given, and so on. In turn a question arises naturally: What 
is the explicit form of the q-deformation of the statistical distribution function f, for 
the q-oscillator? In this letter, we will calculate such an& by means of the double-time 
Green function technique. 

Usually, the double-time Green functions (retarded or advanced) describe the linear 
response of a physical quantity to the applied fields in a certain physical system, which 
are closely related to correlation functions which are responsible for the fluctuations 
of the system. The retarded ( p  = + I )  and the advanced ( p  = -1) Green functions are 
generally defined by [4] 

I 
Gp(f - f ' )=  - - { ( p +  1)!3(1- f ' )+(p-l)O(f' -  t))([A(t), B(f')],,) (1) 

where A( t )  =exp(iHt)A exp(-iHf), ( e ^ ) =  Z-'Tr(e-O"e^), Z=Tr(eCBH), and [A, E], = 
AB+ 7BA; H is the Hamiltonian of the considered system. In addition, the Fourier 
transform of G o ( f - f ' )  can be introduced by 

2h 

m 

G,(o)= dl  G,( f )  exp{i(o+ipO+)t] ( 2 )  

and the spectrum theorem of the Green functions tells us 
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where /3 = l/k,7, C‘-”’=lim,,,wG(w). As can easily be seen, if the Hamiltonian 
and the commutator of two physical quantities of a physical system are known, then 
we can conveniently determine the thermodynamic statistical average of the two 
quantities at finite temperatures in terms of (1)-(3). Following this idea, in a recent 
paper [SI we constructed a general approach to deriving the statistical distribution 
function, which is suitable for not only the usual Bose and Fermi functions but also 
the generalized one so long as the conditions mentioned above are satisfied. Without 
loss of generality of the following discussions we define the statistical distribution 
function as follows 

fp = ( a h )  (4) 

where the Hamiltonian of the system can be assumed to be presented by the operators 
a: and a,. Therefore, if we know the commutator of a: and a, and the explicit form 
of the Hamiltonian expressed by a: and a,, then the statistical distribution function 
f, can easily be derived. Below we will use this method to obtain the statistical 
distribution function f, for the 9-deformed harmonic oscillator in quantum group 
SU,(2). 

For the bosonic q-oscillator case, the 9-Hamiltonian has the form [2] 

%’,, = ffiw(a:a, + a,,.:) ( 5 )  

where the operators a: and a,, are constrained to obey 

[a,,, a:],, = a q a ~ - q ” 2 a ~ a , ,  = 9-NJ2 

[a:, a,]- = [a,,, a,]- = 0 
+ ( 6 )  

with N ,  the number operator whose eigenvalue can be supposed to be N, and that 
parameter p is a real number. We should point out here that such a bosonic 9- 
deformation of (6) does not affect the holomorphic property of the system. Now let 
us define the statistical distribution function for the 9-deformed oscillator as 

fq=(a:a,). (7) 
To obtain f,, we use a: and aq to construct the retarded Green function 

(8) 
1 G,(f - 1’)  = -- O ( t -  f’)([aq(f), a:(f’)],) 
fi 

where a , , ( t )=exp(i~q, t )a ,  exp(-i%J). From ( 5 )  and (6) ,  we get 

[aq, %I- = 9(9)4,  (9) 

with 

cosh(~(2N,,+ 1) In 9} 
cosh{aln q}  

q q )  = ffio(1 + q ” 2 )  

where we have used that fact that a:.,, = [n]  is invariant under the duality transforma- 
tion 9-q-l in the quantum group SU,,(2) [6].  From (8) and (9), and by means of the 
equation of motion of the Green functions, we can easily obtain 

G,(w*iOf)= 9-Nf2 
w - %?(q) *io+’ 
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In the above calculation we have applied the eigenstate of the number operator Nq as 
a complete basis to obtain the eigenvalue N of Nq instead of N, in g(q) of (11). By 
using (11)  and (31, we can exactly derivef, for the bosonic q-deformed oscillator 

q - N / 2  

f , = e s Y ( , ) -  1/2' (12) 
4 

Evidently, when q + 1, S?(q)+ ho, then f, reproduces the usual Bose distribution 
function. For q # 1,f, in (12) is a general form for the bosonic q-oscillator. We should 
state that (12) is exact, and no approximations are applied to it. 

Similarly, for the fermionic q-oscillator case [6] in a generalized sense, the 
Hamiltonian of the system is supposed to be 

2Cq =$ho(b;b, - b,b;) (13) 
while the commutator for b: and b, becomes 

{bq, b:]q=b,b:+q'/2b,fb,=qNd2 
(b,,bJ={b:,b:},=O. 

We see that (13) is a fermionic oscillator-like Hamiltonian when q + 1.  In fact it does 
not possess any oscillating property in true physics, because the canonical momentum 
and the canonical position of the system cannot be well defined in terms of the operators 
b, and b i  to satisfy the uncertainty relation. Here the introduction of (13) is only of 
interest in the study of the quantum group SU,(2). Analogously to the calculations of 
(U), we can also exactly obtainf, for the fermionic q-deformed oscillator 

where 
9 ( q )  = f h o (  1 + q ' / Z ) q N l Z .  

In the limit q + 1, 9 ( q )  + ho, thenf, decouples to the usual Fermi function. For q # 1, 
(15) is expected to be a general form for the fermionic q-oscillator. 

Equations (12) and (15) are main results of this letter, from which we can see that 
after the q-deformation the corresponding distribution functions for bosons and fer- 
mions are highly variable with the parameter q, and are obviously different from the 
usual Bose and Fermi functions. We can therefore observe that the parameter q in the 
quantum group SU,(2) plays an important role in the statistical characteristics of the 
q-oscillator. Finally, we should point out that the results off, achieved above can be 
applied to an anyon gas when q takes some particular forms. A detailed analysis for 
this point will be presented elsewhere. 

We thank Dr Kang Xue and Dr Chang-pu Sun for helpful discussions. This work is 
partially supported by the NSF of China through the Nankai Institute of Mathematics. 
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